第2章 循環器分野におけるニューロモデュレーション治療・各論

2.1 動脈圧反射受容器刺激（図13）

動脈圧受容器反射は交感神経の最も強力な調節系である。先の述べたように動脈圧受容器を電気刺激し、交感神経活動を低下させることで血圧や心拍数を調節する試みは、臨床では1956年より報告がある。その後、CVRx社（米国）から、ジェネレーターと電極が一体となった持続的型電気刺激装置が開発され、治療抵抗性高血圧患者を対象とした多施設研究では、2年間の治療期間中に血圧が低減する持続的な効果が報告された（18）。また、機器の操作が簡単で行われた患者における二重盲検無作為割付試験では、電気刺激群は非電気刺激群と比較して高血圧薬の使用を必要としないことが確認された。収縮期血圧低下を示す患者を対象とした治験群（HingePoint試験）では、治験群に加えてDAT（barorestim


2.2 内頸動脈Reshaping治療（図15）

近年、内頸動脈の形状をステントにより再塑形（reshaping）し、内頸動脈の内膜を四角形に近い形にすることで、収縮による動脈圧反射の有無からの血圧が低下するとして、ニューロモデュレーション（図15）が開発されている（MobiusHD, Vascular DynamicsInc.米国）。治療は、従来の動脈圧反射のゲイン（血圧→交感神経）を低減することによって、心臓の血圧に対する交感神経抑制の度合いを増加することを目的としている。最初のターゲットは直腸血圧であり、獲得した交感神経30名（試験薬）および6名（对照薬）で求められた結果で、カマンカ・リウミーグリフ中の半径維持曲線中の血圧は11mmHgと有意な低下を認めた（23）。現在、多施設二重盲検無作為割付治験（2012年1月より開始）により進行中である。治療薬は動脈圧反射の有無からの血圧が低下することによって、内頸動脈の形状を変形するデバイスであるが、中等度以上に高血圧である場合には効果を発揮することは難しいと予想される。
2.3 脳幹神経刺激（図16）

脳幹神経刺激は、硬膜外にリード（刺激電極）を挿入し、刺激装置から脳幹に微弱な電気を流す治療であり、もととしては慢性疼痛治療法として開発された（24）。本治療法においても、基礎研究で脳幹神経刺激の効果や脳幹神経活動の向上、心不全モーダル動物における心収縮力改善などが報告されてきた。First-in-man試験では、SCS/HEAT試験においても、17名の脳幹下低収縮状態の患者において心収縮力改善が示唆された。また、6名の収縮低下心不全患者に脳幹刺激術で心収縮力を改善したが、6ヶ月後に機能障害や不全マーカーの改善は得られなかった（25）。現在、心不全患者における運動中の直立動脈圧へのSCSの効果を検証する試験が行われている。

2.4 頸動脈小体アブレーション（図17）

図17頸動脈小体ablation

頸動脈小体に存在する末梢化学感受器は、主に動脈圧変動を感知し、呼吸と交感神経活動を制御する反射機構である。末梢化学感受器の興奮が交感神経活動を上昇させることが知られているが、これが原因で血圧があがる。頸動脈小体切除による交感神経活動低下を介して心不全が改善されることが報告されている（18）。ラット及びラットは多機能である。

我々は高血圧性心不全モデルラットにおいて、同治療を行うことによって、交感神経活動、血圧低下、心機能改善、心疾患死亡率の改善が得られることを報告している（26）。

近年、Narinsらは反復的頸動脈小体切除による肺血圧性肺水肿患者への対応として臨床試験にてその有効性を報告している（27）。頸動脈小体をカテーテルアブレーション装置で切除する治療法が使用されており（CIBER南, 米国）、理論的には心不全患者への応用も将来的に検討される。

2.5 腎交感神経アブレーション（図18）

図18 腎交感神経ablation

腎臓を支配する神経の99%以上が神経細胞であり、カテーテルにより筋肉質の内側から腎動脈外腸に腎交感神経アブレーション治療が行われる。現在、高血圧治療の難治性、薬物使用に伴うリスクが問題である。腎交感神経活動の増加は腎性高血压の原因であり、腎性高血圧は細胞レベルでの変化である。腎動脈をカテーテルアブレーション装置で切除する治療法が使用されており（CIBER南, 米国）、理論的には心不全患者への応用も将来的に検討される。

2.6 その他の交感神経抑制療法

交感神経活動の亢進は、心拍数増加、血圧上昇、不整脈、不整形の誘因となる。心臓への交感神経刺激は、交感神経節を脳幹から脊髄習性の神経活動に影響を与える。交感神経活動の抑制は、心拍数、血圧を低下させ、心不全の進行を抑制することが期待される。現時点では、医薬品での治療が主であるが、カテーテルアブレーションによる治療が期待されている。また、腎性高血圧への治療効果や血圧を下げる効果も期待されている。なお、浸透圧の維持や血圧を下げる効果も期待されている。

2.7 迷走神経刺激

迷走神経は心拍数を調整する重要な神経である。迷走神経が支配する心臓の自律性は、心拍数を調整する機能をもつ。迷走神経は、血圧を下げる効果も期待されている。現在では、迷走神経を用いた治療が検討されている。ただし、迷走神経を用いた治療は、心拍数を下げる効果が期待されている。
2004年には、脳と脊髄の内腔神経刺激下での心房細動の予防が報告されている。

図21 |

財団法人日本医療科学技術振興機構の研究によって、肌掛け血圧モニタリングシステムを

A MEDICOの支持のもと、ニューロヒューマンテクノロジー社の共同研究によって、迷走神経刺激カテーテル開発を行っている。カテーテルは刺激装置とつながり、上部肺動脈圧の迷走神経刺激

の効果を示す。カテーテルはステンレス製をしてている。

その他における応用の可能性

心房細動の早期予防の可能性

心房細動の早期予防の可能性は、電気細胞における迷走神経刺激における治療の可能性の一つである。1980年代にSchwartzらの研究グループは、心房

細動により誘発された心房細動細胞の取縮を変調させ迷走神経刺激で著しく抑制できることが報告された（41）。1980年代に心房細動の抑制を図る目的で、心房細動の治療における治療の可能性を示す研究が数多く報告されている。心房細動の治療において、高齢者の迷走神経刺激は心房細動を誘導しやすいことに気をつけておくことが重要である。

図22 |

財団法人日本医療科学技術振興機構の研究によって、脈波性虚血性モニタリングシステムにおいて、高齢者の迷走神経刺激による高齢者の心房細動の抑制が示唆されている（42）。
第3章 おわりに

ニューロモデュレーションは、運動感覚機能の回復から慢性治療までさまざまな医療を可能にする技術である。デバイス開発の発展に伴って、全般的に臨床研究の試みが行われているが、特に循環病態は、自律神経異常の存在が明らかで、ターゲットとして注目されている。

循環器病態に限らず全てのニューロモデュレーション治療において、最も重要な選択肢と効果を最大限にできるデバイスの改良が必須であり、それぞれの課題克服は決して容易ではない。医療、治療の有効性を示し、標準治療となったニューロモデュレーション治療は未だ存在しない。急速な発展が期待される分野において、本邦でも、産学が一体となって優位性のある技術を生かしたデバイス開発の戦略が期待される。

参考文献

8. 朝井啓司, 田村英樹: ニューロモデュレーション治療は心不全治療の未来を変えるか? Heart View, 2019, 49號.


